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Abstract. We consider the one-dimensional gas of rods with finite range interaction.
Using the transfer matrix method we obtain an integral equation that describes the gas
of rods. The integral equation has a non-zero solution, if pressure and chemical potential
satisfy a condition that is only the equation of state. In particular, we discuss the case
of continuum piecewise knear next-neighbour interaction potential for rods.

1. Infroduction

In 1941 Takahashi [1] derived the equation of state (connection between chemical
potential u or density p and pressure P) for the one-dimensional gas of rods. The
range of interaction in his model did not exceed the size of the rod. However, there
arc a few physical problems, e.g. adsorption on a metal surface [2], where longer
range interactions are very important. Therefore, even discussion of one-dimensional
physics may be interesting. In our paper we consider a model with an interaction
range not exceeding twice the size of the rod.

In the first section we obtain a linear integral equation depending on the parame-
ters P and u. For a fixed value of p we look for the maximum pressure P for which
the integral equation has a non-trivial solution. Thus, we obtain the cquation of
state. In this paper we start from a discrete model. This allows us to use the transfer
matrix method. The partition function of the discrete model in the thermodynamic
limit is expressed by the largest eigenvalue of the transfer matrix. After applying
the continuum limit the partially reduced eigenequation for the problem becomes the
integral equation. This method was used in [3-5]. Our approach seems to be more
elementary than calculation by means of the Laplace method [1,6]. At the end of
the section we give the general results for an arbitrary finite range of the interaction.

In the second section we solve the integral equation for the step-like force. Even
in this simplest case the equation of state is very complicated.

2. The integral equation

Suppose that we have a linear lattice with L sites on which we put a number of rods.
Each rod covers d lattice sites. We call U(7) the two-rod interaction energy, where
4 is the number of sites between the rods. The energy equals zero for 2d < j.

In order to define a transfer matrix we denote the sites by pairs of numbers.

Hereafter we assume a periodic boundary condition. Our construction is the following,
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Let us fix a configuration of the rods, which consists of at least one rod. We say that
the rod is a k-rod if there are k empty sites between the rod and its left neighbour.
When & > d we put k = d.

Further, we construct a sequence of pairs (k, j) in two steps. First, we assign all
left ends of the rods, i.e. we fix the label (k,1) to a site, if the site is covered by the
left end of a k-rod. Next, we assign the remaining sites by fixing the label (k,7 +1)
to a site, if it is on the right side of the site assigned by a pair (k, j), unless j = 3d.
In this case we choose the label (k, 3d) for the site.

Obviously not all the sequences are images of rod configurations because rods
must not cover themselves. Thus, we obtain one-to-one relation between the con-
figurations consisting of at least one rod and their images. In the case of an empty
lattice the sequence is not properly defined. Then we choose j = 3d and arbitrary
k. This changes the ordinary form of the equation (5).

Wa can aritae the nartitinn fmnetinn hy moane nf o 2404 _ 1Y v T4( A4 1) matriy
Yro Laln Wil u‘u.r PAiiiivii BURLTIVI Uy IiCdils Wi a oGl @ 1) X ol 1) FGaiiix
with non-zero entries
M¥*¥(3d,3d) = M¥(j,i+1)=1 1< <3d )
MFITG ) = W - WG +k) d<j<d @
M*(j,1) = 2W(j - d) 2d<j<3d &)
where
W(j) = exp(—-8U(J)) )

and z = exp(Bu) with 8 = 1/k7T. Then the partition function of our mode] is

Zy = z 2N Z exp(~3 x energy of config)
N=0 config N rods

=Tr M* - d. S
For the large L we have
Z, ~ AL ©)

max

where A, is the largest eigenvalue of M and satisfies the ¢igenequation

d

3d
SN MEGOVIGE) = AVEG) 0gkgd 1€5<3d, 7
=0 =1

Eliminating V'*(j) from (7) for 0 < k < d and 1 < j < 3d, as in [4,5], we obtain
the following equations:
(A~ 1)A%-1yk(1)

2d-1

=z2(14+ (A -1) 3 W(EI-I-hve(1)
j=d
d—1
+2(A=1)3 WEHWG + k+ )7V, ®

j=0
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It is evident from (5) that the largest eigenvalue of matrix M is larger than 1. For
A > 1, (8) are equivalent to more compact equations

AMVE(D) = ziW(j)W(j+k+d)>\‘5V5(l) 0 k. )]

=0

To see this, we remind the reader of our assumption (U(7) = 0 and W(j) =1 for
j > 2d) and note that for k > d

VE(1) = vi(1).

The natural unit of length for the model is the length of the rod.Therefore, we
change A to A!/? and z t0 z/d before taking of the limit d = oo (continuum limit).
In this limit (8) are converted into the integral equation

2
AV, =2(1+In) jW(y)/\z'y dy}v;
1

1
+ =z lnA]W(y)W(1+m+y)A2“3’Vydy 0gzg1 (10}
[t}

where V, is substituted for discrete V'*(1), and (9) becomes the following:

exp(BP]V, = expBu] j expl-AlU(W) + Ulz +y+1)+ P}V, dy ()
1]

with U(x) defined by (4) and A = exp(SF) (fulfilled in the thermodynamic limit ).
The generalization of (11) for arbitrary finite range of the interaction is

exp[BP]V,

03Tl g0y TN
= exp[ﬁ#]/exp{'ﬁ[U(-TN) +U{ey+ey +1)+ -
o]
+U(xN+"'+w(]+N)+PI"N]}V::1,:,,...,EN dmN' (12)

If U(z) =0 for = > 1, then the general equation reduces to the well known formula

[1,6]

explAP] = expldu] [ expl-B(U(2) + Pa)]da. 13
0
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3, The simple example

Equation (10) is difficult to solve even for simple potentials. However, it is possible to
solve it for the step-like potential and the continuum piecewise potential. The second

potential appears to be better for physical applications. We will restrict ourselves only
to this case.

We define W(x) with the help of (4) and the potential

Uz)=(2-2)F, 12
Ule)=(1-z)F, + F, 0gzgt (14)
U(z)=0 2z

The calculations with different values of forces F, and

when they are equal to each other,
The explicit form of (10) is

BPexp[38P|V, = exp[Bu] (F Pe;;p[ﬁ;P Fz)])

+ BFPexp(B(u+ 2P - F, — F,))

lmx

y (exp[——ﬁF2(1 — )] j exp(—B(P — F, — Fy)y]V, dy
0

1
+ [ exol-p(P- Fl)ylv,,,dy). as)

11—z

It is not difficult to see that a solution V, of the integral equation (15) satisfies the
linear differential equation

f ferr AR o P PR — —x 1 Y ,]’ PRy — — 0\ N
1[(V,;e-~”*) exp(~B(P - F, - t"z)w)] exp[BFyz] f exp(B(P - Fy - Fy)z)
= 2 F}exp[-B(3P —2p + F, + 2]V, (16)

where the primes denote derivatives with respect to x. The gencral solution of the
differential equation (16) is

V. = C| exp[Bayz] + C, exp[Bayz] + Cyexp[Bazz] + C exp|Ba,z] an
where o, ay, oy, a4 are the zeros of the characteristic polynomial in o

oo~ Fy)(a+ Fy - P)(a+ Fy + F; ~ P)
— (F3/8) exp[-B(3P ~ 2u + Fy +2F3)). (18)
When the characteristic polynomial (18) has multiple zeros, the general solution of

the differential equation (16) differs from (17). We can consider this case as the limit
of the case without multiple zeros.
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We can number the zeros of the characteristic polynomial (18) such that

ota;=a3+oa,=P-F
ooy + oz = Fo)(P- F, - F,) 19)
ooz, + (szﬁ)2 exp[-B(3P - 2u+ F, + 2F,)] = 0.

Substituting the solution (17) into the integral equation (15) and comparing coeffi-
cients of exp[Ba,z],exp[Fa,x),exp[Fazz],exp[fa,z],exp[8F,z],1, we obtain
a set of six linear equations for C,, C,, Cg, C,. This set of equations has a non-trivial
solution when

(Tu exp[fon /2] nzexp[ﬁcvz/?})
oy — F, oy — F,
x [(P — Fyexp[-B(P — F,)]) (nsexp[Bay/2] + nyexp[Bex, /2])

b exp[—Bas/2] exp[-—ﬁad/2])]
(P - Fy) ("13 Aoy +my Aoy
= (ﬂanP[ﬂaalzl n4e[ﬁa4/2])
ag — F,
x [(P — F,expl-8(P = F})]) (n; exp[8e; /2] + n; explBo; /2])
p_ exp[-Ba, /2] exp[—Bay/2]
(- (m 2200 el 20)
where
m=logleg - RV i=1,2,3,4 @1
and
Ny = N3Ny = —(Fy/B)exp(B(3P - 2u + F, + 2F,)/2]. (22)

Equation (20) is the equation of state for our model.

For our simple potential (14) we can easily solve the discrete prototype of (10)
ie. (8). However, in the limit d = co we obtain the same result as in the continuum
case. Equation (20) can be examined numerically. For fixed pressure P and inverse
temperature 5 we can find the chemical potential 1. The technical problem can be
the complex zeros of the characteristic polynomial or the complex roots n,. We can
avoid the problem by writing our equation of state using an infinite series. The terms

of the series are polynomials in the coefficients of the characteristic polynomials.
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