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J. Phys. A: Math. Gen. U (19a) 43094313. Plinted in the UK 

One-dimensional gas of rods with next-neighbour interaction 

J Cislo 
Institute of lheoretical Physiep, University of k t a w ,  Cybulskiego 36. 50205 k l a w ,  
Poland 

R s e ~ e d  7 Oclober 1991, in final form 6 April 1992 

Abstraet Nk mnsider lhe onedimensional gas of mds with Bnile range interaction. 
Using the mnsfer matrix method we obtain an integral equation that describes the gas 
of mds. ?he integral quation has a non-zero solution, if pressure and memical potential 
satisfy a mndition that i only the equation of state. In particular, w dkuss the casc 
of mntinuum piecewise linear next-neighbour interaction potential for mds. 

i. intduct ion 

In 1941 "dkahashi [l] derived the equation of state (connection between chemical 
potential p or density p and pressure P) for the one-dimensional gas of rods. The 
range of interaction in his model did not exceed the size of the rod. However, there 
are a few physical problem, e.g. adsorption on a metal surface [2], where longer 
range interactions are very important. Therefore, even discussion of onedimensional 
physics may be interesting. In our paper we consider a model with an interaction 
range not exceeding twice the size of the rod. 

In the first section we obtain a linear integral equation depending on the parame- 
ters P and p. Far a fured value of p we look for the maximum pressure P for which 
the integral equation has a non-trivial solution. Thus, we obtain the equation of 
state. In this paper we start from a discrete model. This allows us to use the transfer 
matrix meth&. -The partition function of the discrete model in the thermodynamic 
limit is expressed by the largest eigenvalue of the transfer matrix. After applying 
the continuum limit the partially reduced eigenequation for the problem becomes the 
integral equation. This method was used in [3-51. Our approach seems to be more 
elementary than calculation by means of the Laplace method [1,6]. At the end of 
the section we give the general results for an arbitrary finite range of the interaction. 

In the second section we solve the integral equation for the step-like force. Even 
in this simplest case the equation of state is very complicated. 

2. The integral quation 

S ~ p p c ! ~ .  *..at we. hw% 8 !ine.ar ~ . . ! h  L. sites nn which we put a number of rods, 
Each rcd covers d lattice sites. We call U ( j )  the two-rod interaction energy, where 
j is the number of sites between the rods. The energy equals zero for 2d < j .  

In order to define a transfer matrix we denote the sites by pairs of numbers. 
Hereafter we assume a periodic boundary condition. Our construction is the following. 
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L.et us fur a configuration of the rods, which consists of at least one rod. We say that 
the rod is a k-rod if there are k empty sites between the rod and its left neighbour. 
When k > d we put k = d.  

Further, we construct a sequence of pairs ( k , j )  in two steps. First, we assign all 
left ends of the rods, Le. we lix the label ( k ,  1 )  to a site, if the site is covered by the 
left end of a k-rod. Next, we assign the remaining sites by fixing the label (k,j t 1) 
to a site, if it is on the right side of the site assigned by a pair (k,j), unless j = 3d.  
In this case we choose the label (k,  3 d )  for the site. 

Obviously not all the sequences are images of rod configurations because rods 
must not cover themselves. Thus, we obtain one-to-one relation between the con- 
figurations consisting of at least one rod and their images. In the me of an empty 
lattice the sequence is not properly defined. Then we choose j = 3d and arbitrary 
k. This changes the ordinary form of the equation (5). 

with non-zero entries 
Wn n ~ n  .=ln:tn +ha n.r+:+An h.*r+inn h . r  -ann.- nf - 2rl1-I 1 \  Y Irl/rl 1 \  mntriv 
111  -.. " l l L l  LL.1  y'7.L.LLY.L .Y..L.L.".. ", .Ill',.W "X ', "U\U - A, A "U\U - A, I U Y L L M  

M k k ( 3 d , 3 d )  = M " ( j , j  + 1 )  = 1 1 < j < 3 d  (1) 
( j , l ) = z W ( j - d ) W ( j + k )  d < j < Z d  (2) 

M k d ( j , l )  = z W ( j  - d )  2 d < j < 3 d  (3) 

~k j - d  

where 

and z = exp(Pp) with = l / k T .  Then the partition function of our model is 

Z, = z N  exp(-P x energy of config) 
N=O cvnfig N rods 

= Tr M L  - d .  

For the large L we have 
L 

ZL - 4" 
where A,,, is the largest eigenvalue of M and satisfies the eigenequation 

d 3d 

C x M k ' ( j , i ) V ' ( i )  = X V k ( j )  0 < k < d 1 < j < 3d.  
I=o i=l 

(7) 

Eliminating V k ( j )  from (7) for 0 4 k < d and 1 < j < 3d,  as in [4,5], we obtain 
the following equations: 

( A -  1 p 3 d - l v k  ( 1 )  

d-1 

+ z(A - 1)c W ( j ) W ( j  + k + d ) X z d - j - l V j ( l ) .  
j = O  



One-dimensional gns of rods with nert-nei@bour interaction 4311 

It is evident from (5) that the largest eigenvalue of matrix M is larger than 1. For 
X > I, (8) are equivalent to more compact equations 

'RI see this, we remind the reader of our assumption ( U ( j )  = 0 and W ( j j  = 1 for 
j 2 2 d )  and note that for k 2 d 

vy1) = Vd(1). 

The natural unit of length for the model is the length of the rod.Therefore, we 
and z to z / d  before taking of the Limit d = CO (continuum limit). change X to 

In this limit (8) are converted into the integral equation 

X31nAVz = z ( l + I n X  W(y)X2-Ydy)Vl 1 1 

0 

where V, is substituted for discrete V k ( l ) ,  and (9) becomes the following: 

with V ! z ]  defined by (4) and X = exp(pP) (fulfilled in the thermodynamic limit 1. 
The generalization of (11) for arbitrary finite range of the interaction is 
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3. The simple example 

Equation (10) is difficult to solve even for simple potentials. However, it is possible to 
solve it for the step-like potential and the continuum piecewise potential. The second 
potential appears to be better for physical applications. We will restrict ourselves only 
to this case. 

We define W(I) with the help of (4) and the potential 

U(I) = (2  - z )Fz  

U ( I )  = 0 2 6 2 .  

1 < 2 < 2  
U ( z ) = ( l - z ) F 1 + F z  0 < 1 < 1  

The calculations with different values of forcer Fi and F2 are the same as in the case 
when they are equal to each other. 

The explicit form of (10) is 

It is not difficult to see that a solution V, of the integral equation (15) satisfies the 
linear differential equation 

where the primes denote derivatives with respect to I. The general solution of the 
differential equation (16) is 

V, = C1 exp[Oal=l + C2 exp[0az=1 + C3expIPa34 + C 4 e x ~ I P ~ 4 4  (17) 

where al, aa, a3, a4 are the zeros of the characteristic polynomial in a 

a(a  - FZ)(a + F1 - P ) (  (I + FI+ Fz - P )  
- (Fz/P)’exp[-P(3P - 2~ + Fl + 2F2j1. (18) 

When the characteristic polynomial (18) has multiple zeros, the general solution of 
the differential equation (16) differs from (17). We can consider this case as the limit 
of the case without multiple zeros. 
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We can number the zeros of the characteristic polynomial (18) such that 

al + a2 = a3+a4 = P -  F1 

a1aZa3a4 + (FZ/P)’ exp[-P(3P - 2@ + Fl + 2Fz)1 = 0. 

alaz + a3a4 = Fz( P - Fl - Fz) (19) 

Substituting the solution (17) into the integral equation (15) and comparing meffi- 
cients of exp[pa,z], exp[pazz], exp[pa3z],exp[Pa4z],exp[PFzz], 1, we obtain 
a set of six linear equations for C,, C,, C,, C,. This set of equations has a non-trivial 
solution when 

‘Iz exp[paz/2’> a 2  - Fz 
x [ ( P -  Fzexp[--P(P- F z ) I ) ( ‘ I ~ ~ x P ! P ~ ~ / ~ I  + ‘I4exp[pa4/2]) 

where 

and 

‘ 1 ~ 1 ) ~  = ‘ 1 ~ 1 ) ~  = -(F2/P)exp[P(3P- 21.1+ Fl + 2Fz)/21. (22) 

Equation (20) is the equation of state for our model. 
For our sinrpie pientiai ji4j we can easiiy soke iine discrete prototype of (i8j 

ie. (8). However, in the limit d = 03 we obtain the same result as in the continuum 
case. Equation (20) can be examined numerically. For fixed pressure P and inverse 
temperature p we can find the chemical potential 1.1. The technical problem can be. 
the complex zeros of the characteristic polynomial or the complex mts qi. We can 
avoid the problem by writing our equation of state using an infinite series. me terms 
of the series are polynomials in the coefficients of the characteristic polynomials. 
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